A Sparse Covariance Function for Exact Gaussian Process Inference in Large Datasets

نویسندگان

  • Arman Melkumyan
  • Fabio Tozeto Ramos
چکیده

Despite the success of Gaussian processes (GPs) in modelling spatial stochastic processes, dealing with large datasets is still challenging. The problem arises by the need to invert a potentially large covariance matrix during inference. In this paper we address the complexity problem by constructing a new stationary covariance function (Mercer kernel) that naturally provides a sparse covariance matrix. The sparseness of the matrix is defined by hyperparameters optimised during learning. The new covariance function enables exact GP inference and performs comparatively to the squared-exponential one, at a lower computational cost. This allows the application of GPs to large-scale problems such as ore grade prediction in mining or 3D surface modelling. Experiments show that using the proposed covariance function, very sparse covariance matrices are normally obtained which can be effectively used for faster inference and less memory usage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Gaussian Process Inference for Short-Scale Spatio-Temporal Modeling

This paper presents an efficient Gaussian process inference scheme for modeling shortscale phenomena in spatio-temporal datasets. Our model uses a sum of separable, compactly supported covariance functions, which yields a full covariance matrix represented in terms of small sparse matrices operating either on the spatial or temporal domain. The proposed inference procedure is based on Gibbs sam...

متن کامل

Variational Inference for Sparse Spectrum Approximation in Gaussian Process Regression

Standard sparse pseudo-input approximations to the Gaussian process (GP) cannot handle complex functions well. Sparse spectrum alternatives attempt to answer this but are known to over-fit. We suggest the use of variational inference for the sparse spectrum approximation to avoid both issues. We model the covariance function with a finite Fourier series approximation and treat it as a random va...

متن کامل

Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs

Standard sparse pseudo-input approximations to the Gaussian process (GP) cannot handle complex functions well. Sparse spectrum alternatives attempt to answer this but are known to over-fit. We suggest the use of variational inference for the sparse spectrum approximation to avoid both issues. We model the covariance function with a finite Fourier series approximation and treat it as a random va...

متن کامل

Understanding Probabilistic Sparse Gaussian Process Approximations

Good sparse approximations are essential for practical inference in Gaussian Processes as the computational cost of exact methods is prohibitive for large datasets. The Fully Independent Training Conditional (FITC) and the Variational Free Energy (VFE) approximations are two recent popular methods. Despite superficial similarities, these approximations have surprisingly different theoretical pr...

متن کامل

Fast Near-GRID Gaussian Process Regression

Gaussian process regression (GPR) is a powerful non-linear technique for Bayesian inference and prediction. One drawback is its O(N) computational complexity for both prediction and hyperparameter estimation for N input points which has led to much work in sparse GPR methods. In case that the covariance function is expressible as a tensor product kernel (TPK) and the inputs form a multidimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009